Куда установить: в розетку или электрощиток?
Существует два способа монтажа: на DIN-рейку в электрощиток или в отдельную розетку. Реле под DIN-рейку предназначены для защиты всей электросети в квартире или доме и устанавливаются в электрощитовую. Они рассчитаны на большую нагрузку и могут работать с высоким коммутирующим током. Например, РКН МЕАНДР УЗМ-51М рассчитан на ток в 63 А, что позволяет устанавливать прибор в сеть, от которой будут запитаны устройства суммарной мощностью до 13,5 кВт. То есть защищены будут все приборы от обычной лампочки до отопительного котла. Минус этого прибора в сложности монтажа — без должных навыков и инструментов установить будет проблематично, и, возможно, придется привлекать электрика.
Розеточные РКН просты в монтаже: достаточно включить в розетку и подключить бытовую технику. Розеточные приборы рассчитаны на меньшую нагрузку и могут защищать лишь несколько устройств. Например, РКН RBUZ R116Y может защитить приборы суммарной мощностью до 3 кВт, например, водонагреватель и холодильник. Его плюс в том, что никаких навыков и инструментов для монтажа не нужно — просто включил в розетку и пользуйся.
Розеточные устройства удобны для дачи, так как там обычно не так много разных приборов. Также их можно брать с собой на выездные работы, чтобы через них подключать дрель, перфоратор и другой электроинструмент
Особенно это важно, когда приходится работать в сельской местности на большом удалении от подстанции, и линия часто сильно проседает — чтоб не повредить инструмент лучше подключить его через РКН
Как подключить УЗИП в частном доме?
Защитные устройства могут включаться в бытовые электрические сети (с одной фазой и рабочим напряжением 220В) и в токоведущие линии промышленных объектов (три фазы, 380В). Исходя из этого, полная схема подключения УЗИП предусматривает воздействие соответствующего показателя напряжения.
Если роль заземления и нулевого проводника играет общий кабель, то в такой схеме устанавливается простейшее одноблоковое УЗИП. Подключается он следующим образом: фазная жила, подключенная ко входу защитного устройства – выходной кабель, соединенный с общим защитным проводником – защищаемые электроприборы и оборудование.
В соответствии с требованиями современной электротехнической документации нулевой и заземляющий проводники объединяться не должны. Исходя из этого, в новых домах для защиты цепи от скачков напряжения применяется двухмодульный аппарат, имеющий три отдельных клеммы: фаза, нейтраль и заземление.
В таком случае включение устройства в схему производится по другому принципу: фаза и нулевой кабель идут на соответствующие клеммы УЗИП, а затем шлейфом на подсоединенное к линии оборудование. Заземляющий проводник также подключается к своей клемме защитного прибора.
В каждом из описанных случаев чрезмерный ток, возникающий при перенапряжении, уходит в землю по кабелю заземления или общему защитному проводу, не оказывая воздействия на линию и подсоединенное к ней оборудование.
Ответы на вопросы про УЗИП на видео:
Обзор популярных моделей
«ZUBR»
Особенности дифференциальной защиты силового оборудования
Начнём с такого распространённого украинского изделия, как защитное реле марки «ZUBR», пользующееся определённым спросом в России. На это устройство производителем даётся гарантия на срок до 5-ти лет; при этом многие пользователи хорошо отзываются о его работе.
Релейный прибор с индексом 25D, например, рассчитан на предельные токи до 25-ти Ампер и обеспечивает неплохие характеристики стабилизации сетевого напряжения (включая тепловую защиту). Эта модель привлекает к себе пользователей относительно низкой стоимостью (для России она составляет порядка 1500-1900 рублей).
«РЕСАНТА»
Рассмотрим далее модуль стабилизации АЗМ-40А, производимый китайской (смотрите фото ниже).
Изделие АЗМ-40А
Это изделие также достаточно дешево (до 700 рублей) и пользуется определённой популярностью в широких потребительских массах. Другим его плюсом является отсутствие каких-либо органов ручного управления, что в некоторых ситуациях выглядит как недостаток (все зависит от предпочтений пользователя).
К недоработкам этой системы можно отнести широкий диапазон регулируемых напряжений (от 170 до 265 Вольт), что означает продолжение работы оборудования в опасных для некоторых образцов техники условиях.
Обратите внимание! Из-за отсутствия органов регулирования изменить эти границы не представляется возможным. Добавим ко всему сказанному большие габариты прибора и низкое быстродействие по защитному отключению (до 6-ти секунд)
За такой промежуток времени при сильных перенапряжениях большинство приборов точно сгорит. Время восстановления этого устройства составляет всего 2-3 минуты, что недостаточно для некоторых образцов бытового оборудования (для холодильников, например, этот показатель должен быть не менее 5-ти минут)
Добавим ко всему сказанному большие габариты прибора и низкое быстродействие по защитному отключению (до 6-ти секунд). За такой промежуток времени при сильных перенапряжениях большинство приборов точно сгорит. Время восстановления этого устройства составляет всего 2-3 минуты, что недостаточно для некоторых образцов бытового оборудования (для холодильников, например, этот показатель должен быть не менее 5-ти минут).
РН-111А (113)
Данная модель релейного оборудования выпускается известным и надёжным ).
Модуль релейной защиты РН-113
Изделия марки РН-113 имеют целый ряд преимуществ, основные из которых приводятся ниже:
- Прежде всего, это достаточно высокое быстродействие, составляющее 0,2 секунды (сравните с предыдущей моделью с её 6-ю секундами);
- Далее большой диапазон регулировки граничных пределов напряжения;
- Возможность самостоятельного задания момента повторного включения;
- Наличие цифрового индикатора с отображающимися на нем режимами работы и функциональными параметрами.
Единственным недостатком этого устройства считается низкая нагрузочная способность (всего 16-32 Ампер), что для загородных объектов потребления иногда бывает недостаточно.
В связи с этим специалисты советуют дополнять прибор отдельным контактором и специальным автоматом, обеспечивающим защиту его релейной части. В итоге вся комбинированная конструкция может обойтись пользователю в сумму порядка 2,5-3,0 тысяч рублей (для модели РН 113, рассчитанной на 32 Ампера, стоимость комплекта существенно возрастёт).
УЗМ-51М
Этот прибор выпускается питерской и считается одним из наиболее надёжных и эффективных образцов оборудования данного класса.
К его достоинствам следует отнести:
- Довольно широкий диапазон установки предельных значений напряжения (от 160-ти до 280-ти Вольт);
- Высокое быстродействие (время срабатывания – всего лишь 0,02 секунды);
- Максимальная нагрузочная способность – до 63-х Ампер;
- Наличие защитного механизма от импульсных перенапряжений;
- Сравнительно небольшие размеры и отсутствие необходимости дополнять комплект какими-либо элементами.
Добавим к этому невысокую стоимость изделия, которое можно приобрести на рынке примерно за 2 тыс. рублей.
В заключенной части отметим, что перед принятием окончательного решения по выбору защитного оборудования желательно обратиться к специалисту, способному оценить возможные угрозы и предложить пользователю тот или иной образец
При этом важно понимать, что приобретение пусть и дорогого, но достаточно эффективного средства защиты от всплесков питания и перенапряжений равноценно надёжному вложению денег
Стабилизатор тока
Опасность короткого замыкания заключается в том, что оно может вызвать возгорание оборудования и пожар. Именно поэтому защита от перенапряжения сети 220 В, применяемого в быту, чрезвычайно важна. Для этих целей потребители часто используют стабилизатор напряжения. При его выборе необходимо учитывать следующие характеристики:
Тип сети. По числу проводов они делятся на однофазные (с двумя проводами) и трехфазные (с четырьмя проводами).
Мощность. Перед приобретением стабилизатора следует посчитать суммарную нагрузку всех устройств, которые планируется защитить. Показатель мощности защитного прибора должен на ступень превосходить полученное число.
Пусковой ток
Этот параметр необходимо брать во внимание при защите устройств с асинхронными двигателями (насосов, холодильников). Для их бесперебойной работы требуется стабилизирующее устройство с запасом до 25%.
Что касается необходимого числа стабилизирующих приборов, то оно зависит от того, сколько электрических устройств работает в одной сети. Система, состоящая из 2−3 маломощных электроустройств, будет эффективно работать при наличии одного стабилизатора, встроенного в неё на входе.
Как правильно защитить бытовую технику
Не стоит недооценивать важность защиты от скачков напряжения. Регулярные перепады в сети приводят в неисправное состояние электронику точного оборудования, выводят из строя реле и двигатели холодильников, морозильных камер. Часто даже способствуют сгоранию техники
Чтобы этого не случалось, нужно оборудовать дом надежными защитными приборами
Часто даже способствуют сгоранию техники. Чтобы этого не случалось, нужно оборудовать дом надежными защитными приборами.
Реле контроля напряжения
Реле контроля напряжения трехфазное ZUBR 3F, 5А
Такая защита от повышенного напряжения позволяет мгновенно отключать все приборы от сети. Устройство контролирует параметры Вольт и при их резком повышении блокирует подачу питания к бытовой технике. После того как сеть стабилизирует свою работу, аппарат снова включается в работу и запускает технику.
Различают точечные реле (вилки и переходники), а также устройства по типу автомата для установки на DIN-рейку к распределительному щитку. В первом случае аппараты контролируют и защищают отдельные бытовые приборы. Так сказать, являются индивидуальными. Второй вариант — это надежный автомат защиты от перепадов напряжения в сети для всего дома.
Стабилизатор напряжения
Релейный стабилизатор напряжения
Такая защита по напряжению предполагает изменение параметров по Вольтам до тех пор, пока они не будут приведены к нормальному состоянию. К примеру, стиральная машина или телевизор, подключенные через стабилизатор, работают всегда на одном напряжении. Если аппарат улавливает резкий скачок, то пропускает к бытовой технике лишь нормальный показатель 220-230 В.
Главные технические параметры стабилизаторов — время реакции на скачок, точность стабилизации, диапазоны входного напряжения и уровень издаваемого шума.
Все устройства такого типа делят на несколько видов:
- Релейные. Самые дешевые виды стабилизаторов. Имеют низкий уровень мощности. Если и используются до сих пор, то на отдельные бытовые устройства.
- Электромеханические (их еще называют сервоприводными). Рабочие характеристики подобных аппаратов мало отличаются от стабилизаторов релейных. Единственная разница между первыми и вторыми – чуть более высокая цена.
- Электронные. Подобные устройства собирают на базе симистора или тиристора. Такие стабилизаторы отличаются хорошей мощностью, долговечностью, точностью реакции на скачки напряжения. При максимально быстром своем действии электронные устройства обеспечивают надёжную защиту от перепадов напряжения.
- Электронные двойного преобразования. Подобные стабилизаторы — самые дорогие из всех. При этом они хорошо защищают как отдельные бытовые приборы, так и всю электросеть в доме. Выделяют одно- и трехфазные устройства. Первые применяют в быту. Вторые — на крупных промышленных, коммерческих объектах. Стабилизаторы двойного преобразования способны сглаживать резкие перепады в диапазонах от 90 до 380 Вольт с отменной точностью.
ИБП (источник бесперебойного питания)
Источник бесперебойного питания (ИБП) APC Back-UPS CS 650VA/400W
Главная задача ИБП — не защита от высокого напряжения, а обеспечение автономного резервного электроснабжения при резких и непродолжительных отключениях энергии. Подобные аппараты особенно нужны в частных домах, если в поселке остро стоит проблема частого отключения света.
Есть также разновидность источника бесперебойного питания с функцией стабилизатора. Если случится резкий высокий скачок напряжения, такой ИБП способен мгновенно переключиться на резервное питание и выровнять параметры Вольт в сети до оптимальных.
Датчик перепадов напряжения
Сетевой фильтр MOST EHV 2м (белый)
Это небольшое устройство, так же как и реле, контролирует скачки напряжения в сети. Но его монтируют сразу с УЗО (устройством защитного отключения). Если датчик выявляет нарушение сетевых параметров, он провоцирует утечку тока. В этом случае УЗО обнаруживает её и отключает питание на дом в аварийном режиме.
2 главных аргумента за и против. Что лучше — РН или стабилизатор.
Из нашей сравнительной характеристики ясно, что достоинство РН — недостаток стабилизатора. Если в вашем доме редко случаются перепады, сеть относительно стабильна, но, случаются резкие и очень высокие скачки, вам подойдет больше РН, его скорость срабатывания значительно выше и он вовремя выключит квартиру.
Если у вас сеть нестабильная сеть, разница потенциалов постоянно низкая, после чего несколькими скачками поднимается до нормы и колеблется около 200-220 Вольт, вам необходим стабилизатор, он выровняет сеть, и все приборы будут работать стабильнее.
Приведем примеры из реальной жизни:
Александр, 32 года, Омск
«Неделю назад в доме случился перепад. Из телевизора сзади, и из розетки пошел дым. Телевизор полетел сразу. У соседа дела были еще «веселее»: сгорел холодильник, плазма, две лампочки и стиральная машина. Остается только догадываться какое было напряжения, судя по сгоревшим лампочкам, то вольт 300. В каждой квартире что-то сгорело. Проконсультировались с электриком. Решено ставить РН, надо было сделать это раньше»
Светлана, 54 года, Москвоская область
«Живем на даче уже второй год. Свет постоянно моргает, к этому невозможно привыкнуть, раздражает ужасно. Ездили в администрацию, в службу районную — всем все равно. Дача? Радуйтесь, что свет есть. Муж поставил РН, но толу от него мало, выключает свет где-то по 10 раз за день. Стабилизатор проблему решил, теперь свет не моргает»
Делаем вывод: полностью защитить квартиру или дом способен стабилизатор вместе с РН — 2 в 1. Реле обеспечит быстрое выключение в случае крайне резкого скачка, а стабилизатор выровняет разность потенциалов до нормальных 220 Вольт.
Классификация электрооборудования по рабочему напряжению
Практическими экспериментами выявлено, что через установленную молниезащиту при ее пробое в электрическую схему здания вероятность проникновения импульсов разрядов более 6 киловольт составляет около 10%. Этот показатель взят за основу расчета и проектирования электроприборов, создания защит от высоковольтного перенапряжения, как наиболее вероятного.
Устройства защиты от импульсного перенапряжения бытовой электрической сети создаются для работы с этими группами напряжений.
Категория электроприборов №1
Изготавливаются с изоляцией, обеспечивающей защиту от импульсов напряжения, не превышающих 1,5 кВ. Устанавливаются внутри электрических приборов, работающих со сложной электронной схемой или полупроводниковыми элементами.
Категория электроприборов №2
Изоляция защищает от импульсов до 2,5 кВ. Применяется для бытовых электрических приборов, электрифицированного инструмента домашнего мастера: дрелей, перфораторов и подобных устройствах.
Категория электроприборов №3
Создаются с защитой изоляции от импульсов до 4 кВ. Она устанавливается на розетках и выключателях, электродвигателях, электрических плитах, электропроводке, внутри распределительных щитов.
Категория электроприборов №4
Изоляция выдерживает проникновение импульсов до 6 кВ. Ею снабжаются автоматические выключатели, разрядники, счетчики электроэнергии.
Поскольку электрические приборы ГРЩ своей изоляцией способны сами выдерживать импульсы напряжения до 6 кВ, то их защиту с помощью УЗИП не выполняют. А вот все остальные бытовые потребители нуждаются в защите — снижении возникающих перенапряжений до 1,5 кВ, как минимум. Эту задачу УЗИП и обеспечивает.
Причины и последствия перенапряжения
Сетевое перенапряжение может быть чревато поломкой дорогостоящих приборов. Есть несколько факторов, по которым величина напряжения в сети резко меняется:
- Неверное соединение проводов в щите. Случается это чаще всего из-за банальной невнимательности. Если подлежащие соединению провода были перепутаны, это приведёт к возникновению скачка.
- Разрыв нулевого провода. Именно он отвечает за то, чтобы в сети было правильное ровное напряжение без перепадов. Его разрыв непременно повлечёт за собой сбой, при котором один участок электрической цепи получит 220 В, а другой — 380 В.
- Просчёт операторов. В процессе работы на подстанциях иногда специалисты производят несогласованное регулирование подаваемого тока.
- Электропитание от одной линии. Такие линии обладают заводом очень большой величины. Когда всё оборудование, подключённое к ней, одномоментно запускается, внутри сети происходит резкий подъём тока.
- Природные факторы. В первую очередь к таким факторам относится гроза. Разряд молнии, попадающий в линию электропередач, провоцирует импульсное напряжение, достигающее десятков тысяч вольт. Чтобы не нарушить работу электрических приборов в такой ситуации следует в обязательном порядке обесточивать их во время грозы либо заранее позаботиться об установке молниезащиты.
Современные приборы, работающие от электросети, создаются с учётом возникновения небольшого перенапряжения. Если его величина не превосходит 1000 В, то благодаря встроенной защите поломки не случаются. Но в случаях когда перепад превышает установленную норму, наступает короткое замыкание, проявляющееся в перегреве проводов, пробоях изоляционной оболочки, появлению искр. Подобная ситуация весьма опасна для человека.
Инверторы прямоугольного тока и напряжения
На рис. 7 представлены полумостовой и мостовой инверторы прямоугольного тока (рис. 7а) и напряжения (рис. 7б) с ЗДЦ первого типа. Переход от полумостового варианта к мостовому предполагает замену трансформатора Тр на Тр1 в первой схеме и перемычки П на П1 — во второй. Такая замена удваивает число транзисторов, сохраняя их рабочее напряжение, и соответственно — установленную выходную мощность преобразователя.
Следует однако указать, что в мостовой схеме инвертора напряжения (рис. 7б) желательно в цепи перемычки П1 использовать уравнительный конденсатор Сур с малым рабочим напряжением для исключения насыщения трансформатора из-за статической или динамической несимметрии вольт-секундных параметров при различных полярностях. Указанная несимметрия особенно часто проявляется при регулировании (ШИМ, ЧИМ или АИМ). Инверторы тока, а также полумостовой вариант инвертора напряжения свободны от этого недостатка.
Рис. 7. Полумостовой и мостовой инверторы: а) прямоугольного тока с ЗДЦ первого типа; б) прямоугольного напряжения с ЗДЦ первого типа
На рис. 8 приведены схемы полумостовых и мостовых нерегулируемых инверторов прямоугольного тока с комбинированными ЗДЦ первого и второго типа: с раздельными транзисторами (рис. 8а) и с модульными парами транзисторов (рис. 8б). Особенностью обоих мостовых вариантов (с пунктирным до полнением) является сохранение при этом всего двух ЗДЦ.
Рис. 8. Полумостовой и мостовой нерегулируемые инверторы прямоугольного тока с комбинированными ЗДЦ первого и второго типа: а) с раздельными транзисторами; б) с модульными парами транзисторов
Варианты второй схемы (рис. 8б) представляют особый интерес благодаря возможности использования модульного исполнения транзисторных пар (или всех четырех).
Причины возникновения и опасность скачков напряжения
В момент перепада напряжения в электрических сетях его амплитуда изменяется на короткий промежуток времени. После этого она быстро восстанавливается с параметрами, приближенными к начальному уровню.
Подобный импульс электрическим током продолжается буквально в течение нескольких миллисекунд, а его возникновение обусловлено следующими причинами:
- Грозовые разряды. Вызывают скачки напряжения до нескольких киловольт, которые не сможет выдержать ни один прибор. Подобные перепады нередко становятся причиной отключения сети и пожара.
- Перенапряжение, вызываемое процессами коммутации, когда подключаются или отключаются потребители с высокой мощностью.
- Явление электростатической индукции при подключении электросварки, коллекторного электродвигателя и другого аналогичного оборудования.
Опасность последствий от перенапряжений наглядно отражается на рисунке, где грозовой и коммутационный импульсы существенно отличаются от номинального сетевого напряжения. Изоляционный слой в большинстве проводов рассчитан на значительные перепады и пробоев обычно не случается. Часто импульс действует очень недолго и напряжение, проходя через блок питания и стабилизатор, просто не успевает подняться до критического уровня.
Иногда слой изоляции сети 220 В может не выдержать возрастающего напряжения. В результате случается пробой, сопровождающийся появлением электрической дуги. Для потока электронов образуется свободный путь в виде микротрещин, а проводником служат газы, наполняющие микроскопические пустоты. Этот процесс сопровождается выделением большого количества тепла, под действием которого токопроводящий канал расширяется еще больше. Из-за постепенного нарастания тока, срабатывание защитной автоматики немного запаздывает, и этих нескольких мгновений вполне хватает, чтобы вывести из строя в частном доме всю электропроводку.
Особую опасность представляют повышенное и пониженное напряжение, находящееся в таком состоянии долгое время. В основном это происходит по причине аварийных ситуаций, которые требуется устранить, чтобы ток пришел в норму. Других способов нормализации и каких-либо специальных приборов, защищающих от этого явления, не существует.
Почему происходят скачки напряжения в энергетической сети
Обратимся к закону Ома (точнее к его следствиям). Мощность потребления исчисляется, как произведение величины силы тока на значение напряжения. Если генерирующее устройство имеет ограничение по мощности нагрузки, то при увеличении тока потребления, напряжение в линии пропорционально снижается. Аналогично происходит обратный процесс: если при фиксированной мощности генератора, снижается ток потребления, резко повышается напряжение в сети.
Разумеется, генерирующие электроустановки проектируются таким образом, чтобы напряжение в сети автоматически стабилизировалось.
Однако на практике, параметров стабилизирующих схем часто недостаточно.
Еще одна причина, не связанная с неисправностью сети — перекос фаз. Как правило, все трансформаторные подстанции работают по трехфазной схеме 380 вольт. Возьмем, к примеру 90 квартирный многоэтажный дом. Питание помещений организуется следующему принципу: общая нейтраль, и по одной фазе 220 вольт на каждые 30 квартир.
Если на одной из фаз пропадает нагрузка (обрыв линии, сработал автомат защиты, и прочее), на оставшихся вводах автоматически возрастет напряжение.
Реле напряжения 220 В для дома: управление и дополнительные возможности
Управление устройства осуществляется с помощью кнопок на передней панели. Устанавливается нижний предел (обычно от 190 до 210 В). Шаг переключения составляет 1−2 В. После таким же образом выставляется верхний предел (220−280 В, шаг в 1−2 В). На последнем этапе можно установить задержку включения – от 3 до 900 сек.
Номинальный ток прибора зависит от марки и модели и может быть равен 25А, 32А, 40А, 50А или 63А. Этот параметр будет зависеть от нагрузки, создаваемой всеми потребителями в квартире или частном доме, подключёнными к 3- или 1-фазному реле контроля напряжения. Но это лишь общие сведения. В зависимости от марки и модели, перечисленные параметры могут отличаться.
К дополнительным возможностям можно отнести термозащиту, срабатывающую при внутреннем перегреве. Она отключает устройство при нагреве до определённой температуры, что может произойти при плохом контакте.
Установка реле напряжения RBUZ в квартирный электрощит
Итак, после теории переходим к практике.
РН было установлено в процессе капитального ремонта квартиры в панельной девятиэтажке.
Девятиэтажка, в которой будет стоять новый щиток с реле напряжения
Вот так выглядит щиток в подъезде, к которому необходимо было подключить квартирный щиток:
Электрощит в подъезде, от которого идет питание на электрощит в квартире
Не самый печальный вариант.
Щиток в квартиру на этапе проектирования:
Проектирование и начало сборки электрощита
Схему щита я обязательно приведу и мы её обсудим ниже. А вот ещё несколько фото щитка, в котором установлено реле напряжения RBUZ.
Процесс монтажа щитка в квартире. Рядом – слаботочный щиток
Электрощит в квартире на автоматах ИЕК и РН RBUZ
Продолжаем сборку. Расключены нули и некоторые фазные провода:
Продолжаем сборку щита в квартире, подключаем нули
Итоговая сборка щитка, всё подключено
Вверху – земляная шина РЕ (Protect Earth, подробнее про системы заземления здесь), внизу – три шины нейтралей N1, N2, N3. Подробнее я расскажу при описании электрической схемы щитка.
Общий вид щитков – слаботочный и силовой
Квартирный электрощит в сборе
Напряжение на электрощит подано. Приятная особенность реле напряжения – на его индикатора всегда видно, какое напряжение подается в квартиру. На фото – 239 В.
Вот ещё пара фотографий окончательного монтажа, с подписями нагрузок:
Фото рабочего электрощита с закрытой дверцей
Электрощиток с надписями на автоматах
Модель электрощита – Schneider Electric Easy 9. В щитке оставлено 4 или 5 мест модулей. Как показывает жизнь, потом хозяину квартиры обязательно захочется поставить ещё пару автоматов)
Источник: