Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды

Виды датчиков и их характеристики

Измерение температуры термометром сопротивления происходит с помощью одного или нескольких чувствительных элементов сопротивления и соединительных проводов, которые надежно спрятаны в защитном корпусе.

Классификация ТС происходит именно по типу чувствительного элемента.

Металлический термометр сопротивления по ГОСТ 6651-2009

Согласно ГОСТ 6651-2009 выделяют группу металлических термометров сопротивления, то есть ТС, чей чувствительный элемент — это небольшой резистор из металлической проволоки или пленки.

Платиновые измерители температуры

Платиновые ТС считаются самым распространёнными среди других видов, поэтому их часто устанавливают для контроля важных параметров. Диапазон измерения температуры лежит от -200 °С до 650 °С. Характеристика близка к линейной функции. Один из самых распространённых видов — Pt100 (Pt — платиновый, 100 — означает 100 Ом при 0 °С).

Никелевые термометры сопротивления

Никелевые ТС почти не используются в производстве за счет узкого температурного диапазона (от -60 °С до 180 °С) и сложностей эксплуатации, однако, следует отметить, что именно они имеют самый высокий температурный коэффициент 0,00617 °С-1.

Ранее такие датчики использовались в кораблестроении, однако, сейчас в этой отрасли их заменили на платиновые ТС.

Аналоговые и цифровые термометры

Аналоговые

Эти устройства обычно недороги и не требуют сложного ухода. Главная их проблема – шкала. Либо она показывает температуру с высокой точностью, но измерительный интервал при этом очень мал, либо охватывает широкий температурный диапазон, но точность показаний – приблизительна.

Цифровые

Такие устройства дороже, по сравнению с аналоговыми, но их точность гораздо выше. Позволяют производить измерения в широком интервале, применяются в быту и технике.

Конструктивные составляющие цифрового термометра:

  • чувствительный элемент (обычно это терморезистор);
  • аналогово-цифровой преобразователь, который трансформирует электрический сигнал от терморезистора в цифровой;
  • дисплей;
  • элемент питания;
  • вводы-выводы сигналов, необходимые для взаимодействия с другими устройствами.

Виды термодатчиков

Наиболее распространенными считаются следующие типы термометров сопротивления (далее ТС):

  1. Полупроводниковые датчики. Отличительные особенности этих приборов заключается в высокой точности и стабильной чувствительности, а также в возможности измерения быстротечных процессов. Благодаря низкому измерительному току имеется возможность работы со сверхнизкими температурами (до -270°С). Пример конструкции полупроводникового ТС.

    Конструкция термистора

Обозначения:

  • А – Выводы измерителя.
  • В – Стеклянная пробка, закрывающая защитную гильзу.
  • С – Защитная гильза, наполненная гелием.
  • D – Электроизоляционная пленка, покрывающая внутреннюю часть гильзы.
  • E – Полупроводниковый чувствительный элемент (далее ЧЭ), в приведенном примере это германий, легированный сурьмой.
  1. Металлические датчики. У таких измерителей в качестве ЧЭ выступает проволочный или пленочный резистор, помещенный в керамический или металлический корпус. Металл, используемый для изготовления чувствительного элемента, должен быть технологичен и устойчив к окислению, а также обладать достаточным температурным коэффициентом. Таким критериям практически идеально отвечает платина. Там, где не столь высокие требования к измерениям, может использоваться никель или медь. В качестве примера можно привести термодатчики: PT1000, PT500, ТСП 100 П, ТСП pt100, ТСП 50П, ТСМ 296, ТСМ 045, ТС 125, Jumbo, ДТС Овен и т.д.

Термопара

Термопары обычно используются для измерения более высоких температур и более широких температурных диапазонов.

Чтобы резюмировать, как работают термопары: любой проводник, подвергнутый температурному градиенту, будет генерировать небольшое напряжение. Это явление известно как эффект Зеебека. Величина генерируемого напряжения зависит от типа металла. Практические применения эффекта Зеебека используют два разнородных металла, которые соединены на одном конце и разделены на другом. Температуру соединения можно определить по напряжению на разомкнутых концах проводов.

Существуют различные типы термопар. Определенные комбинации стали популярными, и выбор комбинации зависит от различных факторов, включающих в себя стоимость, доступность, химические свойства и стабильность. Для разных применений лучше всего подходят разные типы, и их обычно выбирают на основе требуемого диапазона температур и чувствительности.

Графики характеристик термопар смотрите на рисунке 5 ниже.

Рисунок 5 – Характеристики термопар

Основные особенности прибора

Платиновое термосопротивление Pt100 является достаточно распространенным элементом, так как у него очень хорошее соотношение качества и цены. Его можно использовать как отдельный прибор для измерения. Но можно встроить в гильзу иного устройства, чтобы осуществлять учет данных изменения температуры. Главное при этом – правильно учесть диаметр гильзы, чтобы не было большой разницы диаметров. В этом случае удастся обеспечить наилучшее условие для того, чтобы анализировать температуру сред.

Обычно такие датчики применяются для того, чтобы контролировать температуру в системах вентиляции, теплоэнергетических установках, а также иных отраслях.

Типы и классификация

В зависимости от функционального признака, выделяют несколько классификаций пирометров.

По существенному методу, используемому в работе:

  • Инфракрасные;
  • Оптические.

Оптические пирометры подразделяются на:

  • Яркостные;
  • Цветовые, или мультиспектральные.

По образу прицеливания различают устройства с оптическим или лазерным прицелами.

По применяемому коэффициенту излучения выделяют пирометры с переменным и фиксированным коэффициентом.

По возможности транспортировки пирометры делятся на стационарные и мобильные (переносные).

Основываясь на возможном диапазоне измерений выделяют:

  • низкотемпературные (-35…-30 °С);
  • высокотемпературные (+400 °С и выше).

Градуировочные таблицы термометров сопротивления

Градуировочные таблицы — это сводная сетка, по которой можно легко определить при какой температуре термометр будет иметь определенное сопротивление. Такие таблицы помогают работникам КИПиА оценить значение измеряемой температуры по определённому значению сопротивления.

В рамках этой таблицы существуют специальные обозначения ТС. Их вы можете увидеть в верхней строчке. Цифра означает значение сопротивления датчика при 0°С, а буква металл, из которого оно создано.

Для обозначения металла используют:

  • П или Pt — платина;
  • М — медь;
  • N — никель.

Например, 50М — это медный ТС, с сопротивлением 50 Ом при 0 °С.

Ниже представлен фрагмент градуировочной таблицы термометров.

Никелевые термометры сопротивления

Температурный коэффициент (далее ТК) у данного типа измерительных устройств самый высокий — 0,00617°С-1. Диапазон измеряемых температур также существенно уже, чем у платиновых ЧЭ (от -60,0°С до 180,0°С). Основное достоинство данных приборов – высокий уровень выходного сигнала. В процессе эксплуатации следует учитывать особенность, связанную с приближением температуры нагрева к точке Кюри (352,0°С), вызывающую существенное изменение параметров ввиду непредсказуемого гистерезиса.

Данные устройства практически не используются, поскольку в большинстве случаев их можно заменить приборами с медными чувствительными элементами, которые существенно дешевле и технологичнее (проще в производстве).

Виды и устройство терморезисторов

Терморезисторы можно разделить на две большие группы по реакции на изменение температуры:

  • если при нагреве сопротивление падает, такие терморезисторы называются NTC-термисторами (с отрицательным температурным коэффициентом сопротивления);
  • если при нагреве сопротивление увеличивается, то термистор имеет положительный ТКС (PTC-характеристику) – такие элементы называют ещё позисторами.

Тип термистора определяется свойствами материалов, из которых изготовлены терморезисторы. Металлы при нагреве увеличивают сопротивление, поэтому на их основе (точнее, на базе оксидов металлов) выпускают термосопротивления с положительным ТКС. У полупроводников зависимость обратная, поэтому из них делают NTC-элементы. Термозависимые элементы с отрицательным ТКС теоретически можно делать и на основе электролитов, но этот вариант на практике крайне неудобен. Его ниша – лабораторные исследования.

Конструктив термисторов может быть различным. Их выпускают в виде цилиндров, бусин, шайб и т.п. с двумя выводами (как у обычного резистора). Можно подобрать наиболее удобную форму для установки на рабочем месте.

Преимущества продукции ЭЛЕМЕР-УФА

Компания предлагает большой выбор термопреобразователей (модели ТСМУ, ТСПУ, ТХАУ, ТХКУ, ТПУ), датчиков сопротивления, термопар, биметаллических термометров, отдельные чувствительные элементы для датчиков (платиновые и медные), а также кабели и провода для КИП. Доступны как высокоточные модели (класс точности АА), так и устройства с большим диапазоном рабочих температур, например, термопары с контролируемыми температурами -40. +1800 °С. По индивидуальным заказам возможно изготовление специфических моделей, например, с нижней температурной границей -200 °С.

Компания выпускает измерители РОСА-10 и ИПТВ, предназначенные для контроля температуры и влажности. Все приборы хорошо интегрируются в системы автоматического учёта и контроля благодаря поддержке интерфейса RS-232. Все датчики и преобразователи температуры изготавливаются в пыле- и влагозащищённом исполнении (классы: IP54, IP65 и IP5Х).

Квалифицированные инженеры компании предоставят полную информацию по продуктам КИПиА и помогут выбрать наиболее подходящее для целевых условий устройство. По вопросам подбора, комплектации и приобретения контрольно-измерительного оборудования можно обратиться по телефонам:

  • в г. Уфа,
  • в г. Казань, (843) 292-14-62

Принцип работы

Работа любой термопары основывается на термоэлектрическом эффекте, который был открыт Т.И. Зеебеком в далёком 1821 году. Данный эффект заключается в том, что если последовательно соединить друг с другом два разнородных металлических проводника, образуя таким образом замкнутую электрическую цепь, и в одном месте соединения проводников произвести нагрев, то в цепи возникает электродвижущая сила (ЭДС). Данную электродвижущую силу называют термо-ЭДС. Под действием термо-ЭДС в замкнутой цепи начинает протекать электрический ток.

Как работает термопара.

Место нагрева обычно называют горячим спаем. Место, где нет нагрева – холодный спай. Если в разрыв цепи подключить гальванометр или микровольтметр, то можно измерить величину термо-ЭДС, которая будет составлять несколько мили- или микровольт. Значение термо-ЭДС будет зависеть от величины нагрева в месте соединения проводников и от величины температуры в месте соединения проводников, где нагрев не происходит. Т.е. значение термо-ЭДС зависит от разности температур между холодным и горячим спаем. Также термо-ЭДС зависит и от рода самих проводников.

Будет интересно Чему равна электроемкость конденсатора?

Таким образом, если место соединения разнородных проводников термопары нагреть, то между несоединёнными (свободными) концами проводников возникнет разность потенциалов, которую можно измерить электроизмерительным прибором. Благодаря современным преобразователям возникающую разность потенциалов можно преобразовать в определённое цифровое значение, т.е. вполне реально узнать значение температуры нагрева в месте соединения проводников термопары. Для того чтобы измерения были точными, температура холодного спая должна быть неизменной. Т.к. это не всегда возможно, используются специальные компенсационные схемы для компенсации температуры холодного спая.

Устройство термопары.

Конструкция устройства

Современные термопары изготавливаются различной формы и длины. По конструктивному исполнению их можно разделить на две группы:

  • бескорпусные термопары;
  • термопары с защитным кожухом.

Первые представляют собой изделие, у которого место соединения двух проводников не закрыто и не защищено от внешних воздействий. Такое исполнение позволяет достичь быстрого времени измерения температуры и низкой инертности. Второй тип термопары выпускается в виде зонда. Зонд представляет собой металлическую трубку с внутренним изолятором, выдерживающим высокую температуру. Внутрь зонда помещается термоэлектрический элемент термопары. Благодаря такой конструкции термоэлемент защищён от влияния агрессивных сред различных технологических процессов.

Термопара типа J.

Холодный спай

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору. В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры. Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Термопара газовой плиты.

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Из чего состоит термопара.

Схемы включения ТСМ/ТСП

Существует три варианта подключения:

2-х проводное (см. А на рис. 7), этот наиболее простой способ используется в тех случаях, когда точность результатов не критична. Дополнительную погрешность создает номинальное сопротивление проводников, которыми подключается датчик

Обратим внимание, что для классов точности A и AA данная схема включения неприемлема. Рисунок 7

Двухпроводная, трехпроводная и четырехпроводная схема включения термометра сопротивления

3-х проводное (В). Такой вариант обладает более высокой точностью, чем 2-х проводная схема вариант подключения. Это происходит за счет того, что появляется возможность измерить сопротивление монтажных проводов, чтобы учесть их воздействие.

4-х проводное. Этот вариант позволяет полностью исключить воздействие сопротивления монтажных проводов на результаты измерений.

В измерительных приборах ТС, как правило, включен по мостовой схеме.

Пример подключения по мостовой схеме вторичного прибора (pt100) для измерения температуры воздуха

Обратим внимание, что под rл.с. в электрической схеме подразумевается сопротивление линий связи, то есть проводов, которыми подключен датчик

Чем отличается термосопротивление от термопары?

Схема термопары, ее конструкция, а также принцип работы существенно отличается от термометра сопротивления, расскажем об этом простыми словами. У устройства pt100, а также других датчиков, принцип действия основан на сопоставимости между изменением температуры металла и его сопротивлением.

Принцип термопары построен на различных свойствах двух металлов собранных в единую биметаллическую конструкцию. Устройство, подключение, назначение термопары, а также описание погрешности этих приборов будет рассмотрено в отдельной статье.

Сейчас достаточно понимать, что термопара и ТСП, например pt100, это совершенно разные приборы, отличающиеся принципом работы.

Технические характеристики

Пирометр обладает рядом параметров, которые характеризуют его функциональность. Выбор желаемой модели аппарата осуществляется по их значениям. Обратимся к основным из них.

Оптическое разрешение

Так называют показатель отношения диаметра пятна инструмента к расстоянию до предмета. Эта функция зависит от угла объектива устройства: чем он больше, тем значительную площадь он сможет охватить. Важнейшим фактором точности измерения является наложение пятна исключительно на материал поверхности. Если площадь превышена, измеренное значение скорее всего будет неточным.

Рабочий диапазон

Диапазон действия прибора зависит от пирометрического датчика и, зачастую, варьируется от -30 °С до 360 °С. Так, для бытового использования подойдут почти все виды пирометров, если учесть максимальную температуру теплоносителя в системе отопления до 110 °С.

Погрешность

Погрешность предполагает уровень возможных отклонений значений температуры и зависит от точности пирометра. В среднем допустимые отклонения — не превышающие 2% от нормы.

Коэффициент излучения

Данный параметр представляет собой отношение мощности текущего температурного излучения к такому же показателю эталонного абсолютно черного тела.

В целях более точного измерения многие модели оснащаются лазерной указкой. При этом световой луч размещается не в центре, а указывает оптимальную границу области измерения.

Зависимость сопротивления и температуры

Сопротивление идеальных полупроводников (количество дырок и носителей заряда одинаково) в зависимости от температуры может быть представлено следующей формулой

R(T) = A exp(b/T)

где A, b – постоянные, зависящие от свойств материала и геометрических размеров.

Однако, сложная композиция и неидеальное распределение зарядов в термисторном полупроводнике не позволяет напрямую использовать теоретическую зависимость и требует эмпирического подхода. Для NTC термисторов используется аппроксимационная зависимость Стейнхарта и Харта

1/T = a+b(lnR)+c(lnR)3

где T – температура в К;

R – сопротивление в Ом;

a,b,c – константы термистора, определенные при градуировке в трех температурных точках, отстоящих друг от друга не менее, чем на 10 С.

Стеклянный термистор.

Типичный 10 кОм-ый термистор имеет коэффициенты в диапазоне 0-100 С близкие к следующим значениям:

  • a = 1,03 10-3
  • b = 2,93 10-4
  • c = 1,57 10-7

Дисковые термисторы могут быть взаимозаменяемыми, т.е. все датчики определенного типа будут иметь одну и ту же характеристику в пределах установленного производителем допуска. Лучший возможный допуск, как правило, ±0,05 С в диапазоне от 0 до 70 С. Бусинковые термисторы не взаимозаменяемы и требуют индивидуальной градуировки.

Градуировка термисторов может осуществляться в жидкостных термостатах. Необходимо герметизировать термисторы, погрузив их в стеклянные пробирки. Обычно для градуировки и вычисления констант проводится сличение термистора с образцовым платиновым термометром.

В диапазоне от 0 до 100 С сличение проводится в точках с интервалом 20 С. Погрешность интерполяции обычно не превышает 1 –5 мК при использовании модифицированного уравнения Стейнхарта и Харта:

1/T = a+b(lnR)+c(lnR)2 + d(lnR)3

Могут также использоваться реперные точки: тройная точка воды (0,01 С), точка плавления галлия (29,7646 С), точки фазовых переходов эвтектик и органических материалов.

Для градуировки нескольких термисторов они могут быть соединены последовательно, так чтобы через них проходил одинаковый ток

При градуировке и использовании термисторов важно учитывать эффект нагрева измерительным током. Для 10 кОм – ого термистора рекомендуется выбирать токи от 10 мкА (погрешность 0,1 мК), до 100 мкА (погрешность 10 мК). Для начала определимся с таким типом радиодеталей, как термисторы (или, как их еще называют – терморезисторы)

Они представляют собой полупроводниковый элемент, у которого меняется сопротивление в зависимости от температуры. Эта зависимость может быть:

Для начала определимся с таким типом радиодеталей, как термисторы (или, как их еще называют – терморезисторы). Они представляют собой полупроводниковый элемент, у которого меняется сопротивление в зависимости от температуры. Эта зависимость может быть:

  1. Прямой(чем больше температура, тем выше сопротивление) – это тип PTC (от англ. Positive Temperature Coefficient, то есть позитивный/положительный температурный коэффициент). Альтернативное название “позисторы”.
  2. Обратной(сопротивление увеличивается при уменьшении температуры и наоборот) – это тип NTC (от англ. Negative Temperature Coefficient, то есть негативный/отрицательный температурный коэффициент).

Терморезисторы часто разделят по диапазонам рабочих температур:

  • Низкотемпературные (ниже 170 К);
  • Среднетемпературные (170-510 К);
  • Высокотемпературные (свыше 510 К).

Обозначение термистора указано на рисунке ниже.

Устройство термистора.

Где используются термопары

ТП чаще, чем другие датчики применяют для оборудования, связанного с высокими плюсовыми температурами: топливные котлы и плиты, иное оснащение с горелками, бойлеры, паяльники, пирометры, печи, металлургия.

Термин «термоэлектрический преобразователь» отображает природу сенсора — дифференциальный измеритель, который делает замеры, преобразовывая тепло в электричество.

Термопары — это простые и эффективные сенсоры для высокоточных термоэлектрических термометров, работающих в повышенных температурных рамках.

Яркий пример применения: в составах автоматики топливных котлов и отопления. Сработка оснащения инициируется электросигналом от сенсорного узла с ТП.

Термопары наряду с NTC и PTC термисторами — самые популярные измерители температуры для оборудования, последние имеют свои достоинства (считаются более точными в своих диапазонах), но не охватывают настолько широкие температурные рамки, как ТП.

История

Применение тенденции электрических проводников , чтобы увеличить их электрическое сопротивление при повышении температуры была впервые описана сэром Уильямом Siemens в Bakerian лекции 1871 до Королевского общества в Великобритании . Необходимые методы строительства были установлены Каллендаром , Гриффитсом, Холборном и Вайном между 1885 и 1900 годами.

Space Shuttle широко использовали термометры сопротивления платины. Единственная остановка главного двигателя космического корабля многоразового использования космического корабля «Шаттл» — миссии STS-51F — была вызвана множественными отказами термометров сопротивления, которые стали хрупкими и ненадежными из-за множества циклов нагрева и охлаждения. (Неисправности датчиков ошибочно указывали на критический перегрев топливного насоса, и двигатель был автоматически остановлен.) После аварии двигателя датчики RTD были заменены термопарами .

В 1871 году Вернер фон Сименс изобрел платиновый резистивный датчик температуры и представил трехчленную формулу интерполяции. Термометр сопротивления Siemens быстро потерял популярность из-за нестабильности показаний температуры. Хью Лонгборн Каллендар разработал первый коммерчески успешный платиновый RTD в 1885 году.

В статье 1971 года Эрикссона, Койтера и Глатцеля было идентифицировано шесть сплавов благородных металлов (63Pt37Rh, 37Pd63Rh, 26Pt74Ir, 10Pd90Ir, 34Pt66Au, 14Pd86Au) с приблизительно линейными температурными характеристиками сопротивления. Сплав 63Pt37Rh аналогичен легкодоступной проволоке из сплава 70Pt30Rh, используемой в термопарах.

Чем отличается платиновый термометр сопротивления (ТСП) от аналогов

Чтобы понять чем обусловлена высокая популярность такого вида приборов, стоит пару слов сказать о принципе действия всех вариантов. Термометры сопротивления предназначены для подключения к измерительному оборудованию и для непосредственного замера уровня тепловой энергии. Считывание показаний осуществляется за счет изменений чувствительного элемента. Им является проволока или пленка из металла с известной зависимостью уровня электрического сопротивления от количества тепла.

Согласно действующим стандартам для изготовления чувствительного элемента может использоваться никель, медь и платина. Последний материал наилучшим образом подходит для решения производственных задач. Так, платиновый термометр сопротивления (ТСП) проявляет высокие показания стабильности и надежности при температуре до 600 градусов Цельсия.

Почему термопреобразователи сопротивления (ТС) стоит покупать именно у нас

Рассматриваемые приборы заслужили высокую востребованность неслучайно. Их популярность объясняется тем, что термопреобразователь сопротивления (ТС) обладает отличной взаимозаменяемостью, а также высокой линейностью. Это значит, что при необходимости установки нового прибора, повторная калибровка оборудования не потребуется.

Обратившись к нашим специалистам, вы можете с легкостью купить комплект термопреобразователей, каждый из которых будет отвечать высоким требованиям качества, стабильности и надежности работы. НПП «Прома» обладает широкой географией поставок термопреобразователей и на протяжении последних 20 лет с успехом обслуживает ведущие отечественные заводы. Заказывая продукцию у нас, вы получите лучшее предложение по соотношению качества и стоимости. Мы уверены в надежности предлагаемых изделий, так как работаем с ними в собственном конструкторском бюро, а также производим их на новейшем технологичном оборудовании.

Разновидности датчиков температуры ТСМ

Компания выпускает модификации термопреобразователей с медным ЧЭ от ТСМ035 до ТСМ165. Изделия применяются для постоянного замера температуры:

  • твердых;
  • газообразных;
  • жидких;
  • агрессивных;
  • неагрессивных сред.

Датчики имеют простую конструкцию, невысокую стоимость изготовления. При этом изделия качественные и надежные. Обладают приемлемой эксплуатационной долговечностью.

Основные техпараметры датчика температуры ТСМ

Термопреобразователи характеризуются следующими техническими параметрами:

  • диапазон T°С, от -50°С до +180°С.
  • класс допуска, A, B, C;
  • показатель тепловой инерции, от 1 до 180;
  • защитная арматура: латунь, сталь, медь М1.

Компания также выпускает датчики температуры ТСМУ имеющие унифицированный выходной сигнал. Цена на них выше, чем стандартных ТСМ.

Сферы применения

Одноканальные медные термопреобразователи используются для измерения температур в пищевой промышленности при производстве, стерилизации продукции. По взрывозащите такие датчики имеют обычное и специальное исполнение.

В системах вентиляции, электрощитовых, хранилищах, для контроля и регулировки температуры при технологических процессах используются ТСМ 302. Средний срок службы термопреобразователей сопротивления свыше 5 лет.

Также предлагаем Вам ознакомиться:

Компания НПП «Прома» является одним из ведущих производителей продукции для автоматизации промышленных производств в города России: Москва, Санкт-Петербург, Новосибирск, Екатеринбург, Нижний Новгород, Казань, Челябинск, Омск, Самара, Ростов-на-Дону, Уфа, Красноярск, Пермь, Воронеж, Волгоград, Краснодар, Рязань.

Платиновые измерители температуры

Учитывая распространенность металлических датчиков, имеет смысл привести краткое описание этих устройств, чтобы наглядно показать сравнительные характеристики различных видов, особенности, а также описать сферу применения.

В соответствии с нормами ГОСТ 6651 2009 и МЭК 60751, у рабочих приборов данного типа значение температурного коэффициента должно быть 0,00385°С-1, эталонных – 0,03925°С-1. Диапазон измеряемой температуры: от-196,0°С до 600,0°С. К несомненным достоинствам следует отнести высокий коэффициент точности, близкую к линей характеристику «Температура-сопротивление», стабильные параметры. Недостаток – наличие драгметаллов увеличивает стоимость конструкции. Необходимо заметить, что современные технологии позволяют минимизировать содержание этого металла, что делает возможным снижение стоимости продукции.

Основная область применения – контроль температуры различных технологических процессов. Например, такой прибор может быть установлен в трубопроводе, в котором плотность рабочей среды сильно зависит от температуры. В этом случае показания вихревой расходометра корректируются информацией о температуре рабочей среды.

Датчик термопреобразователь ТСП 5071 производства Элемер

Особенности конструкции устройств

Самый распространенный конструкторский вариант имеет термометр в виде «свободной от напряжения спирали», который производится многими отечественными компаниями. Разница в моделях этого типа заключается в различных размерах используемых деталей и применении разнообразных материалов, использующихся при герметизации чувствительного компонента. Для различных температур необходимо использовать свой тип глазури. Этот тип ТС распространен не только в нашей стране, но и заграницей. Схема термометра сопротивления этого распространенного вида показана ниже.

Второй вид ТС менее популярен из-за своей дороговизны. Он называется на языке специалистов «полой конструкцией». Такой термометр можно найти на важных государственных предприятиях или объектах атомной и оборонной промышленности. Полый тип чувствительного элемента обладает высокой надежностью и стабильностью в работе.

Третий вид ТС – пленочные контрольные элементы. На керамическую основу наносят тонкий слой платины. Такой тип устройства широко распространен за рубежом. Этот термометр сопротивления дешевле предыдущих приборов и практичен, так как имеет меньшие размер и вес. Однако есть и свой минус – низкие стабильность и устойчивость к изменениям окружающей среды и резким перепадам температуры.

Четвертый вариант – платиновый стержень, покрытый массой из стекла. Такой ТС получается дорогим, но зато обеспечивается полная герметизация чувственного компонента и повышается устойчивость к влаге. Но у этого термометра низкий диапазон замера температур.

Сплиттер или размножитель сигнала.

Сплиттер или так называемый размножителя сигнала «размножает» один сигнал RTD в два независимых изолированных сигнала напряжения или тока. Гальваническая изоляция выходов друг от друга и от входа гарантирует, что не возникнет проблем с взаимным влиянием приборов друг на друга при подключении одного датчика к двум и более различным устройствам. Получается своего рода рассмотренный выше вариант с нормирующим преобразователем, но лишенный негативного взаимного влияния приборов друг на друга.

В качестве размножителя можно применить сплиттер модели APD 1393 RTD с двумя изолированными выходами.

Особенности конструкции устройств

Самый распространенный конструкторский вариант имеет термометр в виде «свободной от напряжения спирали», который производится многими отечественными компаниями. Разница в моделях этого типа заключается в различных размерах используемых деталей и применении разнообразных материалов, использующихся при герметизации чувствительного компонента. Для различных температур необходимо использовать свой тип глазури. Этот тип ТС распространен не только в нашей стране, но и заграницей. Схема термометра сопротивления этого распространенного вида показана ниже.

Второй вид ТС менее популярен из-за своей дороговизны. Он называется на языке специалистов «полой конструкцией». Такой термометр можно найти на важных государственных предприятиях или объектах атомной и оборонной промышленности. Полый тип чувствительного элемента обладает высокой надежностью и стабильностью в работе.

Третий вид ТС – пленочные контрольные элементы. На керамическую основу наносят тонкий слой платины. Такой тип устройства широко распространен за рубежом. Этот термометр сопротивления дешевле предыдущих приборов и практичен, так как имеет меньшие размер и вес. Однако есть и свой минус – низкие стабильность и устойчивость к изменениям окружающей среды и резким перепадам температуры.

Четвертый вариант – платиновый стержень, покрытый массой из стекла. Такой ТС получается дорогим, но зато обеспечивается полная герметизация чувственного компонента и повышается устойчивость к влаге. Но у этого термометра низкий диапазон замера температур.

Cплавы благородных металлов

Тип S рассчитан на непрерывную работу в кислых или инертногазовых средах в температурах до 1600 °C. Эти агрегаты не предполагают установки в защитные трубы

Следует принять во внимание уязвимость к загрязнению и возникающий вследствие этого риск охрупчивания

Типа B. Платинородий — платинородиевые.

Тип В предназначен для непрекращающегося цикла в кислых или инертногазовых средах , а также для остановимого цикла в вакууме при температурах до 1600 °C, также не предполагает установку в защитные трубы и уязвим к загрязнению. Агрегаты типов R, S и B часто защищены керамической защитной трубой закрытой конструкции. Для металлических гильз или защитных трубок требуется внутренняя закрытая защитная трубка. Устройства, выполненные из благородных металлов, чувствительны к загрязнению, рекомендуем снабжать их внешней защитой.

Медные устройства и их параметры

Термопреобразователь сопротивления (медный) подходит только для газообразной среды. По параметру погрешности модификации довольно сильно отличаются. В первую очередь нужно рассмотреть термопреобразователи с допуском серии А. Используются они при температуре даже -50 градусов. Однако чувствительность у них не слишком хорошая. Данный параметр в среднем не превышает 34 мк. Все это говорит о том, что при температуре меньше 0 градусов погрешность в среднем равняется 0.5 градусов.

Показатель тепловой инерции в свою очередь доходит до 10 с. В данном случае максимальная возможная температура для моделей равняется 230 градусов. Допускаемый предел отклонений при этом доходит до 0.12 Т. Если говорить про конструктивные особенности, то клеммные головки у моделей данного типа отсутствуют. Герметик во многих конфигурациях используется с порошком. Непосредственно изоляторы часто применяются кремниевого типа. Если рассматривать термопреобразователи с допуском серии В, то они имеют чувствительность на уровне 40 мк. Все это говорит о том, что при температуре меньше 0 градусов погрешность может доходить до 0.45 градусов.

Рассматривая конструктивные особенности модификаций, важно отметить, что множество моделей оснащены клеммными коробками. В данном случае герметик стандартно применяется с порошком

Непосредственно зажимы устанавливаются в передней части корпуса. Защитная арматура чаще всего применяется с маркировкой 15Х.

Источник: ledsshop.ru

Тёплый Дом